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Stability Analysis of an Adaptive Torque 

Controller for Variable Speed Wind Turbines 


Kathryn E. Johnson, Lucy Y. Pao, Mark J. Balas, Vishwesh Kulkarni, and Lee J. Fingersh 

Abstract—Variable speed wind turbines are designed to 
follow wind speed variations in low winds in order to 
maximize aerodynamic efficiency. Unfortunately, uncertainty 
in the aerodynamic parameters may lead to sub-optimal 
power capture in variable speed turbines. Adaptive generator 
torque control is one method of eliminating this sub-
optimality; however, before adaptive control can become 
widely used in the wind industry, it must be proven to be safe. 
This paper analyzes the stability of an adaptive torque control 
law and the gain adaptation law in use on the Controls 
Advanced Research Turbine (CART) at the National 
Renewable Energy Laboratory’s National Wind Technology 
Center. 

I. INTRODUCTION 
HERE are many different types of wind turbines in use 
around the world, each having its own list of benefits 

and drawbacks [1]. Modern horizontal axis wind turbines 
(HAWTs) typically have two or three blades and can be 
either upwind (with the rotor spinning on the upwind side 
of the tower) or downwind. In order for a variable speed 
turbine to achieve its maximum power capture, complex 
aerodynamic properties must be well known; in practice, 
these uncertainties can easily lead to a variable speed 
turbine capturing less power than is possible. Adaptive 
control can solve this problem, and the research presented 
in this paper addresses the stability of a recently proposed 
adaptive control approach [2]. 

T 

Many utility-scale turbines have two fast active control 
systems. The first is generator torque control, which 
opposes the aerodynamic torque provided by the wind and 
thus controls turbine speed. The second is active pitch 
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control, wherein either the entire blade or some section 
thereof can be rotated on demand. This paper focuses on 
adaptive generator torque control (for a constant blade 
pitch) to maximize energy capture in region 2 of a variable 
speed wind turbine. 

Variable speed wind turbines have three main regions of 
operation. The first, region 1, includes the time when the 
turbine is starting up. Region 2 is an operational mode in 
which it is desirable to capture as much power as possible 
from the wind. Region 3 is encountered when the wind 
speeds are high enough that the turbine must limit the 
fraction of the wind power captured so that safe electrical 
and mechanical loads are not exceeded. Fig. 1 gives an 
example of the desired power vs. wind speed for a variable 
speed wind turbine with a 43.3 meter rotor diameter and 
shows the three major control regions. 

In Fig. 1, the power coefficient, Cp, is defined as the 
ratio of the rotor power to the power available in the wind, 
Pwind: 

C = 
P  (1)

p Pwind 

where 
1Pwind = 2 ρAv3 . (2) 

In (2), ρ is the air density, A is the rotor swept area, and v is 
the wind speed. The power P in (1) can be defined in 
different ways, which can result in slightly different 
interpretations of Cp; however, the most common definition 
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Fig. 1. Steady-state power curves for wind and example turbine. Note that 
a real turbine must limit power to a certain maximum load. 
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considers P to be the aerodynamic rotor power: 
ωτ aeroP =  (3) 

where τaero is the aerodynamic torque applied to the rotor 
by the wind and ω is the rotor angular speed.  g. 1, the 
dotted “Wind Power” curve represents the power of the 
unimpeded wind passing through the rotor swept area.  
solid curve represents the power that could be extracted by 
an example real turbine.  ven the dynamics of the wind 
and turbine, there is not a one-to-one correlation between 
wind speed and turbine power, but the “Turbine Power” 
curve plotted in Fig. 1 represents the desired steady-state 
relationship for the example turbine. 

Classical techniques such as PID control of blade pitch 
[4] are typically used to limit power and speed for turbines 
operating in region 3, and some type of generator torque 
control [5] is used in region 2.  though the specific 
techniques used to control modern turbines are proprietary 
and typically unpublished, it is believed that only very 
recently have turbine manufacturers begun to incorporate 
more modern and advanced control methods in commercial 
turbines.   part, this gap between the research and 
commercial turbine communities is a result of the fact that 
so theoretically-based controllers 
successfully tested on real turbines. 

The research presented here provides a stability analysis 
for a system that has already been tested on a real turbine.  
In past work, we developed a very intuitive adaptive 
strategy along with other techniques for improving wind 
turbine performance [2], [3].  This paper now analyzes the 
stability of the adaptive torque control.  e begin with an 
introduction to the dard non-adaptive controller, 
continue with a discussion of the recently proposed 
adaptive controller, and then proceed to the stability 
analysis. 

II. STANDARD VARIABLE SPEED CONTROL 
LAW 

The standard control law for variable speed wind 
turbines in region 2 is intended to maximize energy capture 
by causing the turbine to operate at the peak of its Cp-TSR-
Pitch surface.   (1), we see that rotor power P 
increases with Cp, so operation at Cpmax is clearly desirable.  
As shown in Fig. 2, Cp is a function of blade pitch and tip 
speed ratio λ, where 

v
Rωλ = . 

    A standard control law that has commonly been used for 
region 2 control of variable speed turbines is to set the 
control torque τc (i.e., generator torque) equal to a gain K 
times the rotor speed squared: 

2ωτ Kc =  (5) 
where 

3
3 max

2
1

∗

=
λ

ρ pC
ARK .  

R is the rotor radius, Cpmax is the maximum power 
coefficient, and λ* is the tip speed ratio at which Cpmax 
occurs.  More details on the accurately modeled turbine’s 
operation under the standard control (5) is provided in [2]. 

Fig. 2 was created with the modeling software PROP [6], 
which uses blade element momentum theory [7].  The 
PROP simulation was performed in order to obtain the 
operating parameters for the 600 kW Controls Advanced 
Research Turbine (CART).  This two-bladed, upwind 
turbine at the National Renewable Energy Laboratory is the 
turbine test bed used in this research.  
modeling tools such as PROP are not perfectly accurate, 
and fixed controllers designed using these modeling tools 
are generally still sub-optimal. 

Even if the initially chosen gain K was optimal, wind 
turbine blades change over time due to problems like debris 
build-up and blade erosion, with the same net result as a 
sub-optimally chosen initial K.  udy [5] shows how 
sensitive energy loss is to errors in λ* and Cpmax.  The study 
concludes that a very common 5% error in the optimal tip 
speed ratio λ* alone can cause an energy loss of 1-3% in 
region 2, which is a significant loss in this industry. 

III. ADAPTIVE CONTROL 

A.  Gain Adaptation Algorithm  
In region 2, the adaptive control is very similar to the 

non-adaptive case presented in equations (5) and (6): 





≥

<
=

0,
0,0

2 ωωρ

ω
τ

Mc
. 

The adaptive gain M incorporates all of the terms in the 
non-adaptive torque control gain K except the air density ρ, 
which is kept separate because it is uncontrollable.  M is 
adapted after a certain number n time steps of operation in 
region 2; n is selected to be large enough to average out 
high frequency wind variations and the slowness of the 

-5-137

1115

1 3 5 7 9

11 13

-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

Cp

PitchTSR

 
Fig. 2. Cp vs. TSR and Pitch for the CART.  Turbine power is proportional 
to Cp, so it is desirable for the turbine to operate at the peak of the surface. 
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turbine response. Testing on the CART indicates that the 
adaptation period will need to be on the order of hours. 
This long time period is required in part because of the 
difficulty involved in obtaining a high correlation between 
measurements of wind speed at the rotor and at the 
meteorological tower. Another reason is that the turbine 
changes speed at a much slower rate than the wind and the 
slow responses must be averaged out over time. This long 
adaptation period should not cause significant problems for 
a commercial turbine designer because it is still very short 
compared to the decades-long life of a turbine. 

The control law (7) is split between positive and 
negative regions of ω because it is not desirable to apply 
torque control when the turbine is spinning in reverse. 
Most turbines have separate control mechanisms to prevent 
reverse operation, and, except where specifically noted, this 
research assumes positive operation only. 

We conducted a simulation using a rigid body model 
relating net torque and angular acceleration as 

1ω& = J (τ aero −τ c ), (8) 
where J is the rotational inertia, and using (7) for the 
control torque. This simulation was run for 200 seconds 
with each of 26 different values of the gain M, and the 
turbine’s behavior for each of the 26 gain values was 
averaged over the 200 seconds in order to produce the solid 
“Pfavg” curve in Fig. 3. In Fig. 3, M* = 174.5 is the assumed 
optimal gain based on the standard torque control 
coefficient K in (6) and the simulated Cp surface in Fig. 2. 
~ M is the error in M: 
~ *M = M − M . (9) 

Pfavg, computed in discrete time at a rate of fs/n, is the ratio 
of the mean power captured to the mean wind power (both 
of which are continuous time signals sampled at fs = 100 
Hz on the CART) and is computed as: 

n1 ∑ Pcap (k − n + i) 
Pfavg ( ) = 

n 
1 

i= 
n 
1 (10)k 

∑ Pwy (k − n + i)
n i=1 

where Pwy is the wind power including yaw error, given by 
1 ψPwy = 2 ρAv 3 cos 3 ( ), (11) 

and Pcap is the captured power, given by 
Pcap = τ cω + Jωω& . (12) 

The yaw error factor (cos3(ψ)) in (11) is a necessary 
component of the available power calculation that is 
discussed further in [3].  The first term in Pcap is the 
generator power and the second is the kinetic power (i.e., 
the time derivative of the kinetic energy) of the rotor. The 
reason that Pcap is used in (10) rather than the turbine 
power P given by (3) is that the sensor requirements are 
better suited to the instrumentation normally available on 
an industrial turbine. The two definitions of the turbine’s 
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Fig. 3. Ratio of mean captured power to mean wind power vs. error in 
torque control gain M.  The gain adaptation law uses some properties of 
the Pfavg curve, including the finite maximum and the monotonic nature on 
either side of the maximum.  The y curve is used in section IV.D.3. 

power are closely related, differing only by the mechanical 
losses in the turbine’s gearbox that make Pcap < P by a 
small amount. Given that fact and also Pwind ≥ Pwy, it is 
impossible to state whether Pfavg < Cp as defined in (1) or 
vice versa at any given instant.  However, the magnitude of 
Pfavg doesn’t matter as long as M Æ M* . 

The controller begins by changing M by some ∆M. At 
the end of the adaptation period, the controller evaluates 
the turbine’s performance. If the fraction of the average 
power Pfavg is greater than the fractional mean power in the 
preceding adaptation period, the controller selects a new 
∆M of the same sign as the previous one. This process 
continues in the same manner until the fractional power is 
less than that of the preceding adaptation period. At that 
point, the new ∆M is calculated to have the opposite sign of 
the previous ∆M. Eventually, M should converge toward 
M*, the optimal gain. 

The equations for this gain adaptation are 
M (k ) = M (k − n)+ ∆M (k )  (13) 

∆M ( ) = γ ∆M sgn[∆M (k − n)]sgn[∆Pfavg ( )] ∆Pfavg ( )1 / 2  (14)k k k 

∆Pfavg (k ) = Pfavg (k )− Pfavg (k − n). (15) 

In (14), the |∆Pfavg(k)|½ factor is an indicator of the 
closeness of M to M* . When M is such that operation is 
near the peak of the curve shown in Fig. 3, a given ∆M will 
cause a smaller |∆Pfavg| due to the flatter nature of the curve 
near its peak. Thus, |∆M| decreases as the optimal gain is 
approached. The exponent ½ and the positive gain γ∆M are 
chosen based on empirical results in simulation.  Selection 
of γ∆M will be addressed further in Section IV.D. 

In this research, the controller attempts to have the 
turbine power track the wind power but assumes Cpmax and 
λ* are unknown. In contrast, previous adaptive controllers 
such as those in [8]-[9] focused on different uncertainties 
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


and assumed some knowledge of the Cp surface, 
particularly λ* and Cpmax . An additional difference among 
the various adaptive controllers is the lengthy averaging 
period used in this research, compared to the very short 
time periods used in previous adaptive controllers like [10]. 

Numerous simulations have been run to demonstrate that 
the adaptive controller (7) yields desired turbine behavior. 
These simulations, presented in [2], have used the 
characteristics of the CART and have demonstrated that the 
gain adaptation law given by (13) – (15) causes M to adapt 
towards the optimal gain and then oscillate around it. The 
amplitude of these oscillations is small (around 5% of M*). 

IV. STABILITY 
We now address several stability questions that will help 

to ensure safe and desired operation of the adaptive torque 
gain control law. The first three questions relate to the 
stability properties of the torque control law—a continuous 
time problem on a rapid time scale. First, the simple 
problem of the asymptotic stability of the rotor speed to its 
equilibrium point in the absence of wind and in constant 
wind is addressed. Next, we show that a bounded input 
(i.e., wind) to the system produces a bounded output (rotor 
speed ω). Each of these stability results are shown under 
the assumption that the adaptive control gain M > 0 is 
constant; this is a valid assumption because the gain 
adaptation takes place discretely and on a time scale several 
orders of magnitude slower than that of the wind and rotor 
speed (many hours vs. seconds). The simplified block 
diagram for this system is given in Fig. 4(a), where the 
linear plant is (8) and the nonlinear controller is (7). 

The final stability question regards the convergence of 
the adaptive gain M Æ M*  given the proposed gain 
adaptation law.  Fig. 4(b) shows the simplified block 
diagram for this system, where the nonlinear plant is the 

~ Pfavg vs. M relationship shown in Fig. 3 and the nonlinear 
controller is given by (13) – (15). In all of these proofs the 
air density, ρ, is assumed to be a constant greater than zero. 
In reality, the changes in air density are small. 

A. Asymptotic Stability of ω = 0 
Because wind turbines are designed to spin as freely as 

possible, the friction due to mechanical bearings and air 
resistance during operation is very small.  However, in the 
formal proof of the asymptotic stability of the equilibrium 
point ω = 0, we amend the equation for ω&  in (8) to include 
a frictional term b, where b > 0: 

1ω& = J (τ aero −τ c − bω) . (16) 
The equation for aerodynamic torque, which is derived 
from (3), is 
τ aero = 1

2 ρARCq (λ, β )v2 , (17) 

where the torque coefficient Cq is given by 

4 

Fig. 4. Simplified block diagrams (a) relating aerodynamic torque and 
rotor speed, and (b) gain adaptation law.  The continuous time diagram (a) 
is the topic of Theorems 1 and 2 and the discrete time diagram (b) is the 
topic of Section IV.D. 

Cq (λ, β ) = 
Cp (λ, β ) . (18)

λ 
Given (17) and (7), (16) can be expanded to 

b 2
1 
J ρARCqv2 − J ω , ω < 0 . (19)&ω =  b

 2
1 
J ρARCqv2 − ρ Mω 2 − J ω , ω ≥ 0J 

Theorem 1: The plant (16) and the nonlinear controller (7) 

have an asymptotically stable equilibrium point at ω = 0 

when v = 0. 

Proof: When v = 0, the first term in (19) becomes zero. In 

this case, the simple Lyapunov function candidate


V = 1 ω 2 has the derivative
2 

b − J ω
2 , ω < 0 , 

b 
V& =  ρ Mω 3 − J ω

2 , ω ≥ 0− J 

which is negative for ω ≠ 0 and is zero for ω = 0.  Thus, 
ω = 0 is globally asymptotically stable equilibrium point. 

We should also note that, when b is assumed to be zero, 
the equilibrium point is still stable in a global sense but no 
longer asymptotically stable for ω < 0. The asymptotic 
stability still holds in a local sense for all ω ≥ 0. 

B. Asymptotic Stability of Rotor Speed with Constant, 
Positive Wind Input 

The next stability result to be addressed concerns 
whether or not the rotor speed ω converges to an 
equilibrium value under a constant, positive wind speed 
input. Although it is unreasonable to assume a constant 
wind speed in the field, it is still desirable to understand the 
system response under these controlled conditions. Once 
again, the plant is given by (16) and the nonlinear 
controller is given by (7). The adaptive controller (7) does 
not assume perfect knowledge of the aerodynamic 
parameters Cpmax and λ*. The cubic relationship between 
Cp and λ can be derived by setting the ω ≥ 0 part of (19) 
equal to zero: 

3 

C p =
ρMλ v + λ2 bR 

= G(λ, M , b, v). (20)
1
2 ρAR 3 v 

In (20), b is several orders of magnitude smaller than M* , 
so if it is assumed that M is within a neighborhood (say, an 
order of magnitude) of its true optimal value, the second 
term in the numerator of (20) is insignificant compared to 



the first term in the numerator. Although this fact is not 
required for the following analysis, it simplifies the 
drawing of Fig. 5 because the wind speed v and air density 
ρ both cancel out and Fig. 5 can be drawn for various M 
values independently of v and ρ. When Fig. 5 is plotted 
using representative values of ρ, v, and b, its qualitative 
nature does not change, and the new curves are 
indistinguishable from those plotted on the scale in use. 

Note in Fig. 5 that the cubic function does not intersect 
the CART’s Cp curve at its peak when M ≠ M* . This is 
because optimal power capture cannot be achieved for 
M ≠ M* . Let λ2 be defined as the tip speed ratio at the 
intersection of G(λ,M) with the CART’s Cp vs. λ curve, 
Cp(λ), such that G(λ,M) > Cp(λ) for all λ > λ2., i.e., the 
highest value of λ for which the two curves intersect. Let 
λ1 be defined as the next highest intersection point, i.e., the 
λ for which 0 < λ1 < λ2 and G(λ,M) < Cp(λ) for all 
λ1 < λ < λ2 and G(λ,M) > Cp(λ) for some λ < λ1 within a 
neighborhood of λ1. For the dashed M = 0.7M* curve, 
these values correspond to λ1 = 3.1 and λ2 = 8.4. The 
following theorem states that, for a constant wind input, the 
tip speed ratio λ will converge to λ2 as long as the initial λ 
is greater than λ1. Assume λ1 > 0. 

Theorem 2: The plant (16) and the nonlinear controller 
(7) have a locally asymptotically stable equilibrium point at 
λ = λ2 when v and M are constants greater than zero. The 
domain of attraction is λ1 < λ < ∞. 

Proof: In the domain 0 < λ1 < λ < ∞, ω > 0 holds (since 
~ ω = λv/R). Define λ = λ2 − λ . Now choose the Lyapunov 

~ function V = 1
2 λ

2 . For ω > 0, 
1V& = (λ − λ2 )(2

1 
J ρAR 2 Cq v − JR ρMλ2 v − b λ). (21)

J 

Substitution of Cp/ λ for Cq in (21) and a little algebra 
bprovides the result that (2

1 
J ρAR 2 Cqv −	 1 ρMλ2 v − J λ) > 0JR 

when λ1 < λ < λ2 (i.e., when G(λ,M) < Cp(λ)). Also, 
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( 1 b 

2
1 
J ρAR 2 Cq v − JR ρMλ2 v − J λ)< 0  when λ > λ2 because 

λ > λ2 results in G(λ,M) > Cp(λ) by definition of λ2. Thus, 
V& < 0  for all λ1 < λ < ∞ except λ = λ2, for which V& = 0 . 
This provides the result that the equilibrium point λ = λ2 is 
locally asymptotically stable in the domain λ1 < λ < ∞. 

Note that this proof of the convergence of λ to a specific 
value is equivalent to the convergence of ω to a specific 
value for a specific wind speed because ω = λv/R. Also, 
note that when M = M*, the curves G(λ,M) and Cp(λ) 
intersect at (λ*,Cpmax) and therefore optimal power capture 
is achieved for the constant wind input case. 

C. Input - Output Stability 
All wind turbines have a maximum safe operating speed, 

and usually some type of aerodynamic braking is used to 
prevent the turbine from operating at speeds above this 
maximum. However, it is still useful to examine whether 
the torque control would bound the turbine speed in some 
sense in the absence of these other controllers. The proof 
for Theorem 3, which uses a passivity argument [11] has 
been omitted.  More details can be found in [3]. 
Theorem 3: If Cq ≤ 1, the plant (16) and the nonlinear 
controller (7) is L2 stable, where squared wind speed v2 is 
the input and rotor speed ω is the output. 

The condition Cq ≤ 1 is nearly always satisfied for 
modern turbines. Indeed, since the Betz Limit (see, e.g., 
[7]) states that the maximum Cp for any real turbine is 16/27, 
and the two curves are related by (18), we can guarantee 
that Cq ≤ 1 for λ ≥ 16/27. When λ ≤ 16/27, the question is 
simple, since by the definition of λ in (4) it is known that 
ω = λv 16 v . Thus, for finite λ, L∞ stability is given.R ≤ 27 R 

Unfortunately, over an infinite horizon, v does not lie in 
L2. However, Theorem 3 provides a theoretical assurance 
over any finite lifetime of a turbine. 

D. Convergence of the Gain Adaptation Algorithm 
Since the gain adaptation law performs no calculations 

during (k – n)Ts < t < kTs, Mk–1 can replace Mk–n without 
loss of generality. (The discrete time index k has been 
changed to a subscript for convenience.) A few 
assumptions are made: 

Assumption 1: M* is constant. Although the turbine 
parameters (and thus the optimal gain M*) change with 
time, this is a valid simplification because the turbine’s 
physical changes are typically noticeable only over months 
or years, whereas the gain adaptation law has an adaptation 
period of less than a day. 

~ Assumption 2: The Pfavg vs. M curve has a shape similar 
to the one in Fig. 3, at least in some local region around the 
optimal operating point. This is generally assumed to be 
true for any modern turbine. Specifically, the curve has a 

~ maximum at M = 0 , is continuously differentiable, and is 

5




>

~ strictly monotonically increasing on M < 0 and strictly 
~ monotonically decreasing on M > 0 . 

Assumption 3: The adaptive controller has been 
operating sufficiently long that the specifics of the initial 
conditions provided to the controller are no longer relevant. 
If the initial conditions provided are M0, Pfavg0, ∆M0, and 
M1, then k > 2 is the time frame of interest. 

1. Types of Instability 
We begin by considering the possible ways that the 

~ system could go unstable (i.e., | M | → ∞  as k → ∞ ). One 
~ ~ ~ possibility is for | M k | > | M k −1 | with either sgn( M k ) = 1 or 

~ sgn( M k ) = -1 (∀k > 2). However, it is simple to show that 
this scenario cannot occur with the gain adaptation law 

~ given by (13)-(15). Indeed, the error M will never take 
more than one consecutive step in the wrong direction, i.e., 

~ ~ ~ ~ will not result in | M k +1 | > | M k | > | M k −1 | for sgn ( M k +1 ) = 
~ ~ sgn( M k ) = sgn( M k −1 ) for any k >2. (This proof has been 

omitted; for details, see [3].) 
Since it is impossible for the sign of the adaptation step 

to be incorrect for more than one consecutive step, the 
magnitude of the adaptation step—specifically the gain 
γ∆M—must be the critical factor in determining whether the 
gain adaptation law is stable. Fig. 6 gives an example of a 
situation in which the gain γ∆M is large enough to cause 

~ ~ instability of M. In this example, M k +1 > M k −1
, ∀k > 2 

~ ~ but M k +1 / M k 
, ∀k > 2. 

2. Bounds on Gain γ∆M  for Stability 
Since this type of instability can occur whenever 

~ ∆M k > M k −1 
, it is logical to consider 

~ ~ ∆M k = M k −1 , M k −1 ≠ 0 (22) 

to be the critical case, which may be referred to as the 
marginal stability case. For the symmetrical curve 

~ ~ f (M k −1 ) = f k = aM k 
2 
−1 + b , (23) 

where a < 0 and b is any real number, the γ∆M that makes 
(22) true is simple to find. 

In the critical gain scenario of this example, the system is 
oscillating among the three points plotted in Fig. 7. If 

~ ~ ∆M k = M k −1 , then M k = 0 by (13). Further, substituting fk 

for Pfavgk in (15) and considering (14), in this case the gain 
~ ~ γ∆M is such that ∆M k +1 = ∆M k , so M k +1 = −M k −1 . 

Following the equations through one more step shows that 
~ M k +2 = 0 , and the adaptive gain will oscillate among these 

three points. Thus, an upper bound on the gain γ∆M for 
stability can be found by equating 

~ ~ ∆M k = M k −1 = −M k +1  (24) 
~ and solving for γ∆M in terms of a given M k = 0 , which 
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Fig. 6. Instability example for gain adaptation law. This type of instability 
is possible if the gain γ∆M in the gain adaptation algorithm is too large. 

yields


γ ∆M = ± a 
1 . (25) 


Since γ∆M > 0, the positive value of (25) is chosen. Thus, 
the gain adaptation law (13)-(15) will not cause instability 

~ of M on the curve (23) whenever 0 < γ ∆M < a − 2 
1 . In fact, 

since γ ∆M = a − 2
1 is the marginal stability case, 

~ 
0 < γ ∆M < a − 2 

1 will actually cause convergence of M → 0 . 

Since the requirement on γ∆M is dependent on the 
magnitude |a|, any γ∆M chosen for a specific curve will also 
guarantee convergence of M on a shallower curve—i.e., 
one with a smaller |a|.  A similar result can be stated for an 
asymmetric curve: if the gain γ∆M is chosen to guarantee 
convergence based on the slope of the steeper side of the 
curve, it would guarantee convergence over the entire 

~ curve. Thus, for any turbine Pfavg vs. M curve, there exists 
a γ∆M that guarantees convergence of the adaptive gain M, 

~ and this γ∆M depends on the steepness of the Pfavg vs. M 
curve. 

~ 3. 	Asymmetric Pfavg vs. M Curves 
~ Unfortunately, the Pfavg vs. M curve is not known for 

any turbine, so an approximation is necessary in practice. 
A more conservative selection of γ∆M is then likely to result 
in stability (and convergence), but will also result in 
smaller step sizes and may thus experience slower 
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convergence. 
An example of the selection of γ∆M is provided in Fig. 3. 

The y curve is chosen to fit snugly inside the Pfavg curve 
while satisfying f < Pfavg; in this case, a = -0.00001. Thus, 
the maximum allowable γ∆M for stability is 316. The gain 
used in testing on the CART (before this stability analysis 
was performed) was γ∆M = 100, which was determined 
empirically from simulations and early hardware testing. 
Although actual turbine results indicate stable performance 
of the adaptive control law, this stability analysis provides 
further reassurance and guidelines in choosing γ∆M. 

A formal proof of the stability of the feedback system 
given by Fig. 4(b) with one modification is provided in the 
appendix. Following the proof, we present an argument as 
to the why the modified proof is still relevant. 

V. CONCLUSION AND FUTURE WORK 
We previously developed an adaptive control scheme for 

region 2 control of a variable speed wind turbine. In this 
paper, we have addressed the question of theoretical 
stability of the adaptive controller and have determined that 
the rotor speed is asymptotically stable under the basic 
torque control law and L2 stable with respect to the wind 
input. Further, we have devised a method for selecting γ∆M 

in the gain adaptation law to yield convergence of the 
adaptive gain M. Future work will include extensions such 
as incorporating further past values of M into the control 
law to reduce oscillatory behavior. 

APPENDIX: THE STABILITY PROOF 
The proof in this appendix, which is given in more detail 

in [3], is based on the sector stability criterion given by 
Theorem 2.2 in [12], hereafter referred to as Safonov’s 
Theorem 2.2.  This theorem applies to the two subsystem 
feedback system given in Fig. 8(a), where d1 and d2 are 
disturbance inputs to each subsystem.  The disturbances in 
this proof can be considered to enter the subsystems 
additively, as shown in Fig. 8(b). 

Safonov’s Theorem 2.2 incorporates a functional F 

Fig. 8. Feedback systems considered by Safonov: (a) general case, and (b) 
specific case with disturbances entering additively. 

operating on the signals x ∈ X e and y ∈ Ye , where Xe and 
Ye are extended normed spaces. F defines an inner product 
on x and y as follows: 
F (x, y, t ) ≡ F11 y + F12 x, F21 y + F22 x , (26)

t 

where t denotes a truncation defined by the usual truncation 
operator; F110 = F120 = F210 = F220 = 0; F11, F21: Ye Æ Le; 
and F12, F22: Xe Æ Ye. In this definition, Le is an extended 
inner product space. The sector of F is defined using the 
inner product (26): 
sector (F ) ≡ {(x, y)∈ X e × Ye F (x, y, t ) ≤ 0∀t ∈T }. (27) 

In (27), for the purposes of this analysis, T = [0,∞) is 
considered to be time. Now, Safonov’s Theorem 2.2 
requires the following: 

(a) F is as given in (26) and F11, F12, F21, and F22 have 
finite incremental gain. 

(b) The mappings d1 into S1(d1) and d2 into S2(d2) are 
bounded about S1(0) and S2(0). 

(c) S1
-1(0) is strictly inside sector(F) and S2 is outside 

sector(F). 
Safonov’s Theorem 2.2 concludes that, given (a) – (c), 

the system depicted in Fig. 8(a) has a bounded closed-loop 
gain. 

Now, consider the wind turbine controller with the 
modified gain adaptation law 

k∆M (k ) = γ ∆M sgn[∆M (k − n)]∆Pfavg ( )  . (28) 

First, decompose the system given by (13), (15), and (28) 
into the block diagram in Fig. 9.  The nonlinearity N2 

~ captures the relationship between M and fractional mean 
power Pfavg. Denote 
N1(y) ≡ γ∆M sgn(y)| y | = γ∆M y, N3(x,α) ≡ xα, N4(β) ≡ sgn(β). 

∆M is the input to S21. The output of S21 is given by 
y = N2 (∆M ) . Let p* denote the minimal slope of N2 in the 

*domain of interest and let p denote its maximal slope;
*without loss of generality, let p* = -p . The output of the 

~ linear block H2 is M , and the output of the nonlinear block 
N2 is Pfavg. Further note that y, the output of S21, 
corresponds to ∆Pfavg. Then, 

Fig. 9. Adaptive control feedback system. This system depicts a slight 
modification of the gain adaptation law presented in (13) – (15). 
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~ ~ ∆Pfavg k 
= yk = N2 (∆M k ) = N2 (M k −1 − ∆M k )− N2 (M k −1 ) . (29) 

describes the relationship between ∆M and ∆Pfavg in the 
~ subsystem S21. For any given M k −1 in the domain of 

interest, the relationship (29) is simply the slope of the line 
~ ~ segment connecting the points ( M k −1 , N2( M k −1 )) and 

~ ~ ( M k −1 – ∆Mk, N2( M k −1  – ∆Mk)). Although the magnitude 

and sign of this slope for a given input ∆Mk vary depending 
~ on M k −1 , the slope nevertheless is bounded by the maximal 

and minimal slope of the nonlinearity N2 as long as these 
points are within the domain of interest. Note that when 

~ ∆Mk ∈ L∞ e, so is M k  since the gain of H2 is bounded when 
operating on an extended normed space. 

Now, let x be the input to the subsystem S22, or 
equivalently the input to S2.  Then, ∆Mk = (xk)(sgn(∆Mk-1)) 
and 
yk = N 2 (− xk sgn(∆M k −1 ) − σ k ) − N 2 (− σ k ), (30) 

k −1 
where σ k = ∑ xi sgn(∆M i−1 ) . Note that (30) is similar in 

i=1 

nature to (29). In order to use Safonov’s Theorem 2.2 to 
examine stability of this system, we must first select an 
appropriate sector functional F.  In this case, let Xe and Ye 

be the extended normed space L∞ e and let the components 
*of F be F11 = F21 = 1, F12 = p*, and F22 = -p .  Since p* is 

bounded, requirement (a) is satisfied. Similarly,  since the 
disturbance inputs are additive as shown in Fig. 8(b), the 
requirement (b) is automatically satisfied. Now, only 
requirement (c) remains to be shown. 

Define the inner product in the usual way for discrete 
t −1 

time systems, i.e., , y x = ∑ xi yi 
. Then, the operator F 

t 
i=1 

gives the following inner product for this system: 
− + * * , x p y xp y 

t . (31) 
t −1  2  = ∑ [N 2 (− xk sgn(∆M k −1 ) − σ k ) − N 2 (− σ k )]2 − (p * xk )  
k =1   

Now, given the maximal and minimal slope of the 
nonlinearity N2, we know that 
N 2 (− xk sgn(∆M k −1 )−σ k )− N 2 (−σ k ) < p * xk , 

where | xk |can replace –xksgn(∆Mk-1) for simplicity because 
the slope of the line segment connecting the two points is 
bounded by the same value (p*) regardless of whether the 
input x is positive or negative. Thus, the sum given by (31) 
is less than or equal to zero for all t. This result proves that 

* the graph of subsystem S2 lies inside the sector([-p ,p*]). 
To use the notation in Safonov’s Theorem 2.2, let sector(F)

*be the complement of sector([-p ,p*]), i.e., sector(F) =
*sector([p ,-p*]). Then, the graph of S2 lies outside the 

sector(F). Also, the subsystem S1 is a positive memoryless 
linear operator with gain γ∆M whose graph is simply a line 

through the origin having slope equal to γ∆M. Thus, the 
graph of the inverse of S1 is a line through the origin having 
slope equal to 1/γ∆M. Requirement (c) of Safonov’s 
Theorem 2.2 is satisfied if this line with slope 1/γ∆M lies 
strictly inside the sector(F). Thus, γ∆M must be chosen such 
that γ∆M < 1/p*; if this inequality holds, then the system 
given in Fig. 9 has a bounded closed-loop gain. 

Remark: A stable system may still be obtained by 
replacing the term |∆Pfavg(k)| with the more aggressive term 
|∆Pfavg(k)|½ . Note that, with such an update, the subsystem 
S1 is no longer a memoryless linear operator with gain γ∆M 

but rather a memoryless monotonically increasing positive 
nonlinearity with graph bounded by the sector([0,∞)). If it 
can be shown that the magnitude of the open-loop gain is 
less than unity, stability of the system is established by 
Theorem 1 in [13]; equivalently, the circle criterion and 
related multiplier theory techniques can also be used to 
establish the stability. Future work will include a rigorous 
proof, but, roughly speaking, the proof will show that the 
gain of S2 is arbitrarily small around the operating point 
(∆Pfavg,∆M) = (0,0) since the gain of S1 is arbitrarily large 
in its neighborhood. The gain of S2 may be allowed to be 
relatively high in the region where |∆Pfavg| is large since the 
gain of S1 is very small for large |∆Pfavg|. 
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